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A stochastic differential game with a fixed termination time is considered
within the framework of the formalization in [1]. The existence of saddle
points of the stochastic differential game in classes of position strategies is
proved. The convergence of the stochastic differential game's value to that
of an ordinary position differential game as the noise intensity decreases to
zero is established, The possibility of using a stochastic process as guide in
the control procedures is shown for a position differential game. This paper
follows [2, 3],

1. Let the motion of a conflict-controlled system be described by the stochastic
differential equation

dz [t] = f (¢, =, u, v)dt + xdz [t], =z[t,] =z,
we PCRY, ve QC RY, f:lt,, 91 X R* X P X Q— R"

(L1

Here Z is the phase vector from %, & and v are the controls, and P and @
are closed bounded sets, Function f is continuous, uniformly bounded and satisfies a
uniform Lipschitz conditions in z from R" i, e.,

1F @ 20, u, v) — f &, a®, u, v) || <A 2® — 2@ |
Vt, 2@, u, ) = lte, I X B" X P X Q (i=1,2)

The symbol [ €1l genotes the Buclidean norm of vector &, ¥ is some finite time
instant, 2z [£] is a vector-valued Wiener process whose components z(* [t]
(t=1,2,...,n) areindependent standard Wiener processes (see [4])
and % is a constant,

Let a continuous bounded function ¢ : R™ — R be specified, having continuous
derivatives of up to second order; Oy, satisfies the H&lder condition

[| Ore (V) — O (@ P) | < K |20 — 2@ |J¥, 0<<p<<1, K = const

The mathematical expectation of the random value O (z [8]) serves as the payoff
in the stochastic differential game, These games of the form (1. 1) were examined in
{2,3,5-8]. In the present paper a stochastic differential game is set and investigated
in accordance with the formalization of players® strategies, presented in[1], Three
basic types of position strategies are examined, corresponding to the three cases of
availability of information to the players in the differential game. The existence is
established of saddle points of the stochastic differential game in the class of pure
position strategies of one player and of counter-strategies of the other, as well as in
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the class of mixed position strategies of both players, It is shown that in the limit as
%~>0 the stochastic differential game's value yields the position differential game's
value, A procedure is proposed for solving position game control problems on the
basis of the solution of an auxiliary stochastic game,

Wg define the class of first player's strategies U .

17, Pure position strategies U/ are identified with Borel-measurable
(see [9) functions U : [¢,, 1 X R" — P. The totality of first player's pure
position strategies s denoted {U};-

2", The first player's mixed position strategies U are identified with the
functions U : [, O] X R"— P, where P is the set of probability measures p
normed on compactum P, It is assumed that these functions are Borel-weakly-
measurable, The totality of first player's mixed position strategies is denoted {U}s.

3%, The first player's counter-strategies are identified with Borel-measurable
functions U : [ty, #IXR" X Q — P. The totality of them is denonted {U}.

The second player's strategy classes{V};, {V}s,and {V}; are defined
analogously with the letters U, ., and P replaced by ¥, v, and Q and with the
indices 1,2 and 3 permuted to 3, 2 and 1. We examine the following three sets of
strategy pairs:

{Uh X {V}h, {U)s X {V}s, {U}s X {V}5

For any strategy pair (U, V) & {U} X {V}i(k = 1, 2, 3)we can define the
corresponding weak solution z, [t] = Z [8; o, 2o, U, VI (te < T << 4)  of Eq.
(1.1) (see [4]), satisfying with probability one the equality

t
Za [t] = 20+ § 1 (¥, 2a [7], e [1], ve [¥]) d7 + (1.2)
to

®dzeft] (k=1,3)

S

(4o [T = U (7, o [t]), va [t] =V (7, 2o [7], e [t]), k=1)

(uo [Tl = U (7, za [T], Vo [t valr] =V (7, ze [*]), k= 3)
t

Zp [t] = 2o + S S Sf('r, Zo [T], U, V) Mo, ¢ (dU) Ve, < (dv) dv +-

to P Q

t
\ndzo [v] (% =2)

to

(Mo, c=U(1, 24 (*]), va,r = V(T’ Ze [T]))
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Stochastic control ina differential game

Pro ble m 1. The initial position (Z,, z,)is specified, Find the strategy
U € {Uk, ensuring the fulfilment of the equality
max M [0 (z [D; to, 2o, Uy, V])] =
min max M [o (z [®; to, 2o, U, V)]
vov

(Ui V) e {U}k X {V}k (k =1, 2, 3)

Problem 2. The initialposition (fy, Z,)}is specified, Find the strategy
Vi {V)}, ensuring the fulfilment of the equality

min M [o(x [T to, 2o, U, Vi®)] =
U
max min M {0' (x {ﬂ; tﬂ, Zo, Us V}}}
v v
U, e {Uk x{Vk *k=1,2,3)

2. Letus consider a partial differential equation with boundary condition

4 Ly Fy(tyz, Vi) =0 (k=1,2,3) 2.1

n
8%y (&,
I L
i:}_ :
y@ 2)=0@), ze=h&
Fy :ty, 8] X R* X R*— R

Fy(t, z, s) = min max s'f (¢, z, u, v)
usP ve&EQ

Fy(t, x, s) = min max § §s’f (¢, z, u, v)p(du) v (dv)
neP v&l

Fy(t, z, s) = max mins'f (¢, 2, u, v), s=R"
v&EQ ueEP

Here V9 is the gradient of function ¥ with respect to variable z; 2;(i = 1, 2, . ., n)
are the components of phase vector « ; the prime denotes transposition, The
functions Fy (k = 1,2,3) are continuous and satisfy a Lipschitz condition in
and $§ and, therefore  (see [10] » a solution of the parabolic Eq, (2, 1)
exists,

Let us determine the extremal strategies Uy® & {Uh (k = 1, 2, 3). Let
Vi : [ta, 8] X R™ - R be a solution of problem (2.1). We consider functions
Uy (k = 1,2, 3) satisfying the conditions

max Yy’ (t, 2) 1, 2, wif, v) = Fu(t, 2 Vit o)) (k=1) (2.2)
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max S SVya’ (& x)f (¢, 2, u, v)p’(du)v(dv) = 2.3
vz P @
Falt,z, Vya(t, 7)) (B =2)
(2.9

V't 2) (¢, 2, us, v) ::E?gin Vo't 2) (8 @ u, v) (k= 3)
u
(ule == Ule(i’ z), ue = Uy {t, =), ai}e = U3e(ta z, v))
L lte, BIX R — P, Uy®: [to, 01X R"~ P, U,": [te, 8] X R"Q — P

It is important that the functions U,° (k= 1,2,3) can be chosen from conditions
(2.9~(2. 4) as Borel-measurable one, Analogously, the extremal strategies V,°e&
{V}; (. =1,2,3) are defined as Borel functions whose values satisfy the conditions

V' (¢, 2) (¢t 2, u, vyf) = ma@x v/t ) ft, z, u,v) (k=1) (2.9)
v
min S S Vyo'(t, 2) (¢, 2, u, v)p(du) ve (dv) = (2.6)
neB b Y
(k = 3) 2.7

min Vyy' (8, 2) f (2, x, v, v = F3(t, =, Vys (¢, 7))
uesP

(Vle(f, x, ll-) = L’leE Q,\ Vze {t, 23) == Ve "‘Q-? V:}e(tv .?L') == v3ge Q)

The following statement is valid,
Theorem 2.1, The extremal strategies U,° and ¥, * from (2,2)-(2.7)

solve Problem 1, and Problem 2, , respectively. They form a saddle point of the
stochastic differential game in the strategy class {U}; X {V}p» i.e.,

M {cr (z 19; £y, 2o, U5, VDI Mlo (2 185 8, 2o, U5, Vi1
Mo (z [8; ¢y, 2, U, Vi) (¢ =1, 2,3)
v, MYe {U}k X {V}kv Mo (z [o; o, Zo, Uy’ ka})] =
'Vk(tm x(})
Let us present the proof of this statement for & == 1 (Casesk =2,3 are
proved similarly). Suppose that the first player had chosen the extremal strategy [J, ¢
defined by condition (2. 2) and the second player, an arbitrary counter-strategy

V e= {V};. The random process V;(f, Zolt]), constructed on realizations of the
random process Zolt] = zylt; ¢y, 2y, U,°, V1, has with probability one the

stochastic differential (see [111).

0¥t 24 1)
dya (2o 1)) = o Zel gy

_LMEV—vi(s To [t]) dt - («-—13—(73’——-—> s 2o 1], wo® 1],

[t])dt + (W} % dzg (1]

{2.8}
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ut [t1 = Ui, 2o [t])y Vo lt] = V (¢, 24 [t], uy [£]) (2.9

To the right-hand side of (2. 8) we add and subtract the term (¢, Zoltl, Vy,(2,
z,[t])) dt. We integrate the resulting equation from £, to 9, next we compute
the mathematical expectation and, using Fubini's theorem (see [9]) and the properties
of a stochastic integral ({4]), we obtain

M’Vl ('86.'1? [ﬁa tO, Lo, Uley V]) - V]. (tO’ .Z'o) — (2. 10)
M {§ (V90 (6 20 1) (8, 70 121, uet (2], vo [1]) —

1
Fi(t, 2o [t], Vyi(t, 2o [E])] dt
Since the integrand in (2. 10) is nonpositive when the control y f[¢] is chosen from
conditions (2, 2) and (2. 9), we arrive at the inequality

M[Yl('ﬁ‘, z [9; Ly, zoy Uy° V]) =

2,11
Mo (218 to, 7, Uyt VD < malte, 20) N

Now suppose that the first player chooses an atbitrary strategy U & {U}; and the
second player chooses the extremal strategy V,° from(2,5)., By analogous
arguments we obtain the inequality

M[VI(ﬁ? x[ﬁ, tOs Zo» U, Vle})] - (2.12)
M lo (z[8; t,, zo, U, VDI > v1(te, zo)

The assertion of Theorem 2, 1 for & = 1 follows from (2. 11) and (2, 12).

Theorem 2, 1 establishes, in particular, that for a specified initial position
(o, To) the stochastic differential game's value coincides with the value of function
Vi {Lgs Z0) in each of the cases k = 1,2,3, Up to this point the parameter
x>0 of the stochastic differential game has been assumed fixed and, therefore,
it was omitted in the notation for function Y ., We now use the notation Yy u,
reflecting the dependence of function Yr on parameter X, and we consider the
variation of the stochastic differential game's value Yy, (£, ) for H— 0.

3. Let the motion of a conflict~-controlled system be described by the ordinary
differential equation

= f (t, X, U, U), x [t(]] = Zo, tO ~<\< t< ¢ (3- 1)

The game's outcome is characterized by the value 0 (x [3]). Here f and o

are the functions defined in Sect, 1. A formalization of position differential games
has been constructed in [1] for system (3. 1), Within the framework of this formaliza-
tion it was proved that a differential game defined on any of the three strategy classes
{U}e X {V}(k =1, 2,3) hasthe value cx(fy, Z,). Our purpose here is to
show that in the limit as % ~» 0  the stochastic differential game's value Yk,

(2o o) yields the corresponding value ¢ (o, o) of the position differential
game,
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At first we prove the inequality
lim Vi, % (t01 Zo) > Oy (to, Zo) (3.2)
w0

withk = 1, We define a function V* : [¢y, 8] X R® X B" X P — Q associating
apoint V* & Q  satisfying the condition

. ’ PN _ ’
(x—wYf(t,z,u,v )-—Elég(x wy f(t, z, u, v) (3.3)
with the point (¢, Z, W, ¥) . We define as well a function Uy : [t,, 4] X R" x
R*—~ P whose value U, (¢, z, w) = u, & P satisfies the condition
max (x —w) f(¢t, z, u,, v)= Fy(t, z, x —
s ( ) 1 ( % V) 1(t, 2, z — w) (3.4)

It can be shown that functions V# and U*can be chose Borel-measurable and we
subsequently assume them to be Borel functions, As before we assume that UVf e
{U}, is the extremal strategy defined by (2.2). Note that this strategy depends
upon parameter % . Finally, let V;° & {V}, be the second player's optimal
counter-strategy in the position game defined in the class {U}; X {V}; for
system (3. 1), According to [1] the inequality © (z [9; ty, o, V,°)) > oy, )
is valid for any motion z [¢; £y, 2o, V:°l of system (3. 1), generated by counter-
strategy V,°.

In space R™ X R" we consider the probabilistic process (Zolt],wo [£1)(2p<C
< ®, 0 =Qy) defined as follows, Suppose that a partitioning A of the
interval [, $] bypoints I =T <717 <<...<1Ty =19 hasbeen
selected. We assume that the probabilistic process (z, [£], wg, [¢]) (2o <C
E Ty 0 & Q) has been defined, We select a certain realization (z,[t],
wy [2]) = (o, [t], wo, [2]) (t, < ¢ < 1) of it and we define at first the
probabilistic process (z, [t], we 1) (2o <t < Tiar, ® EQ,)  under the condition
that the selected realization (z,[t], w L) (o < ¢ < 7;) hasbeen fixed. The right
endpoint (2, [7;]y Wy [Ti]) of this realization is denoted (%, wy).  We consider
the motion  z*[¢l(t; < ¢ < Ty+1)  defined by the equality

t
z*[t] = x4 + S f(t, z* 1], ult], v[T])dv (3.95)

@ltl = ult,l = U, (v, 24, wy), v [t]=vlr] = V,° (r, 74, ul7,1))

The equality g (8] = 2*[t]  for 7T; < ¢ < 74y is fulfilled with probability one
in the auxiliary probabilistic process.

Let the function V** : [t,, 8] X R® X P —  be defined by the equality
V** (¢, w, u) = V*(t, 2* [t], w, u), where V'* is the function chosen from
condition (3,3), Clearly V** is a counter-strategy from class {V}1. Therefore, on
the interval [vy, T;,,] we can define a weak solution We (t] = wo lt; Tw, U, SV**]
of the stochastic system

dw [t] = f (t1 w, u, U) dt + xdz [t], w [tOI = Iy (3' 6)
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generated by the pair (U,°, V**) &= {U}; X {V},. The equality

t t
Wo [l = Wy + Sf(f, wo [T], v [T],  Bo[t])dT 4 Sxdzm (7] (3.7)

T, ’
i 7]

woltl = U* (v, wolsl), volal = Vo3, wolxl, . uyltl) =
VA, z*ltl, w (7], uelv]) is fultitled with

probability one for this solution, Thus, we have defined the probabilistic process
(2o 2], wa [2]) (B0 << ¢ << Tiars 0 E Q) for a fixed realization(zo, (2],

wo, [t]) (o <t 1y)  of process (Toltl, wo i) (B <<t << 1y 0= Q).
Using the results [12] and taking into account that U,¢, V*, U, and ¥,° are Borel
functions, we can correctly define the random process (z, [t], welt])(ty <<t < vis1s
0= Qrm)- To complete the recurrent definition of the probabilistic process it
remains to note that on the initial interval [£,, T,] the probabilistic process (%o [2],

wg [t]) is defined by relations (3. 5) and (3, 7) wherein T; = ¢,, and w, = z,

= z,. The following statement holds,

Lemm a 3.1, The estimate

M)z 8] — w BT FT < [1 + (@ — to)]ax (%, 8) exp [24 (& — 2))] (3.8)
(6 = sup;(rs41— 1) (E=04,... ,N—1); a(x, 8§—0

for x =0, § > 0)
is valid for the random process (2, [t], we [£]) (o <t B, © & Qp)  constructed,
Here A is the Lipschitz constant for function f with respect to variable .
To prove the lemma we can first estimate the conditional mathematical
expectation M [|| z [154,] — w [144,] ||?] for the fixed realization (z, [t], w,
[t])(t0 <t < t;). We obtain the estimate

M )|z [Via] — w [Via] P] << 20 [T"i.] -
Wy [Tl 2 (1 + 2h (Tiy — 7)) + (%, 8)(Tivg — Ti)

In the proof of this inequality we use the fact that the functions U, of (3.4) and V*
of (3.3), which prescribe the choice of control %, in system (3.1) and of control v*
in system (3, 6), are determined from the conditions of mutual tracking of components
z [t], w [t] of the random process (z [¢], w [2]). Next we derive inequality (3. 8) by
using the formula for conditional mathematical expectations ({4] ), The following
statement is valid as well,

Lemma 3,2, The estimate

Mo (w [8]) < Y1, (20, o) (3.9

is valid for the random process (%o (2], we Ut]) (t, <t <<, 0 = Q) .
In the proof of this inequality (as in the proof of Theorem 2. 1) we use the fact
that control U [£] (ty <C 2 < @) (see(3.7)) is formed by the strategy U,*
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determined by condition (2.2). Since function O satisfies a Lipschitz condition,

6 (10D < o wo BN+ L || 2,[9] — w, [0]]
Mo (z [0l) K Mo (w 9]) + LM ||  [9] — w [8]

From (3, 8) it follows that M || z [0] — w [8] || < Py, 8), where Py (%, 8)
0 as %x->0 and 8- 0. Therefore, according to (3.9), we have

Mo (2 18]) < vi,» (boy o) + LPBy(x, 8) = 9y (te, o) +
B (e, 8) (B (¢, 8)—> 0 for % — 0andd — 0) (3.10)

According to the results in [1] the optimal counter-strategy V,% ensures the fulfil-
ment of the inequality

Y (-Z'Am; Loy Zoy U [-1, Vi) > eylty, @) — & (8)
(g (8) >0 for 6> 0)

under any choice of measurable realization %[t} & P (6 <t <C9) (here

zalt; ty, o, wl-], V{°1 is an Fuler polygonal line corresponding to counter-
strategy V,° and to control & [-],see [1]). Therefore, for the probabilistic process
being analyzed, where the control v [¢] in system (3. 1) is formed by the strategy V,°
we have the valid inequality

Mo (z18]) > ¢, — & ()
Hence from (3. 10) we obtain

Vi, % (o, Z) > — P 8) —e®@)=c¢ —ax, 8¢
as x>0, 8§60

We have thus proved inequality (3.2) for &k = 1, The inequality

i;i_jl}l;?k % (tos Zo) < (Fos o) (3.1

with £ = 1 can be proved similarly, To do this we should determine Borel functions
U* and V,,  analogously to the functions introduced in the proof of inequality
(3.2), replacing v* by Vi and u, by u* in conditions(3.3) and (3.4).

To determine the probabilistic process (%, [£], wa [8]) (¢ <<t << B) we now
assume that the constant controls # [v;] and v [1;] in (8.5) are determined by the
equalities u [T;] =U,"(v;, #,) and p[1;] = V,(T;, 24 Wy, w0}, where Uy’
is the optimal strategy in the position game defined in the class {U b X {V} for
system (3. 1), In (3.7) we setug, [t] = U*(7, zolth, waulth), and valv] = Vi (z, wo

[1], uolt]), where V,® &= {V}, is the counter-strategy chosen from condition (2. 5).
Lemma 3, 1 remains valid for the probabilistic process defined in this manner, while
instead of inequality (3. 9) the opposite inequality fulfilled, Further, the inequality
Mo (2 [8]) < ¢, + € (8), where & (8) — 0 as  § — Q.isfulfilledby the
choice of strategy U,° . Inequality (3. 11) with k = 1 follows from these relations,
From (3. 2) and (3. 11) we have that the limit of the quantity yy,% (Yo, Zo) a8 % —> 0
exists and equals the value ¢;{fg, Zg)..
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Let us describe briefly the construction of the probabilistic process (z,[tl, w, [¢])
used in the proof of inequality (3.2) with £ = 2, We consider Borel functions U and
V*whose values satisfy, respectively, the conditions

manISJ é(x —w) f(t, z, u, V) py (du) v (dv) = Fy(t, z, z — w) (3.12)
min S S(x —w)' f(t, x, u, v)p(du) v* (dv) = Fy (¢, z,  — w) (3. 13)
ueP P Q

Ut z, wy=p, P, V*(t, z,w)=v*=Q)
(Ux:lto, )X R*XR"— P, T*:[t,, ] xR" X R" - Q)

The motion z*[#](v; < ¢ < T;,4) of system (3. 1) is determined by the equality

a* [t] = 24 + é- 1S> §f(f’ Z* [¥], u, v) pe(du) vo (dv) dv (3.14)

Ky = P«ri = ﬁ* (Ti, Tyer w*)1 Vg = VTi = Vzo (Ti’ .'L'*)

where  V,° is the optimal strategy in the position game defined in the class {U},
X {V}y forsystem(3.1). Let function Ut be determined from condition
(2.3) and function  V** by the equality V#*(¢, w) = V*(!, x, w), where
V* is the function chosen from condition (3. 13); then the pair AR 7**) =
{U}y X {V}s. Let us consider the motion of stochastic system (3. 6), generated
by the pair (U,°, V*). The equality

t

¢
we [t] = wy + S S Sf("’wm[f]v u, V) ko, r (du) Vm,r(dv)dT-FSndzm (] (3. 15)

‘[iPQ T

Ho, v = U (T, we [T]), Vo,v= V* (1, 24 [7], Wy [1])

is fulfilled with probability one for the weak solution We [t] = wo [t T wy,
Uy, V*] | From this point on the construction of the probabilistic process

(7o 7], wo [7]) (y <t o, 0 <= Qp) is similar to the construction
for the case k = 1,

In the proof of inequality (3. 11) with K = 2 we use Borel functions U* and 17*
chosen from conditions analogous to (3. 12) and (3. 13), as well as the functions {/,°
and V,* , where U,° is the optimal strategy in the position game defined in
class {U},x {V}, forsystem(3.1)and V," & {V}, is the mixed strategy
chosen from condition (2, 6).

In the proof of inequality (3. 2) with k = 3 we use the functions defined in the
proof of inequality (3, 11), with the corresponding change of letters ¥, U, P to
v, V, Q@  the replacement of condition (2. 5) by (2.4) and of indexk = 1 by index
k.= 3. In the proof of inequality (3. 11) with & = 3 we use the functions defined in
the proof of inequality (3, 2), with the same interchange of letters and the replacement
of condition (2. 2) by (2.7) and of index k¥ = 1 by indexk =3, Thus we have the
following valid statement,
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Theorem 3.1, The limit of the value Yk,x (f5, %o) of the stochastic
differential game defined in the strategy class {U}, X {V}, exists and equals
the value ¢ (5, 25)  of the position differenti m i
of strategies,

4. Let us show that the stochastic process (3. 6) can be taken as a guide for the
ordinary controlled system (3. 1) when solving position game problems on the minimax
and maximin of the payoff o (x [8]). The control procedures constructed below
ensure results arbitrarily close to the best with probability arbitrarily close to one,

To be specific let us consider the problem facing the first player and construct the
control procedures ensuring the first player the fulfilment of the inequality

4.1
Plo@Oly oty ) el >1—e (k=1,2,3 (41

for a preselected e >> 0 , Here, inthe cases k = 1, we examine the situation
when the first playei knows the current position (¢, « [t]), being his external
information on the motion of controlled system (3.1). The second player can realize
counter-strategies V <= {V};. In the case of k= 2 the first player's external
information also is the knowledge of position (£,  [f]),  while the opponent chooses
the mixed strategies V & {V},. Incasek = 3 the first player knows the position
(¢, = [2]) and the opponent's current control v [¢] , while the second

player can realized a pure strategy V & {V};. In the case k= 1and k = 3 the
first player realizes a pure control u [t] & P and in the case ; = 2, a mixed control
W &= p.

First player's control procedure incase k=1 We
admit the possibility of solving Eq, (2, 1) forany % > 0 ., The estimates onc (x)
from Sect, 3, bounding from above the distance between the numbers ¢, and v »,
can be given explicit expression. We assume here that for any o, ~ ( we know
the quantity ¢ (%) for which

4,2
ler — o | << o@); @ @) >0, x—0 (4.2)

From the specified & >> 0 we determine the number %y > 0 for which the
inequality o (%,) < Vs &*  is fulfilled. We solve the parabolic Eq. (2.1) with
® = % and we determine ¥y, (fo, Zo)- The value ¢; of the position
differential game with payoff o (z [8]) satisfies the inequality

4,3
V1, » (tos To) — 1/ge? < €1 (tos To) T Vi, ua (o o) - /s8R (4.3)

Let us change function ¢ in the following manner, Let D = {r:0 (2)
< Y1, % + 1/,.8%}, we set
o* (2) = {Ylml (to, To) + '/se®, zE=D _ (4.4)
01 (x)(0 (@) — e Lo (@) o (z), 2&D

where function @, is chosen so that function ¢* belongs to the class indicated in
Sect. 1 and the condition within parentheses above is fulfilled. We see that with the
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changed payoff function g* the value (denoted ¢;*) of the position differential
game in the strategy class {U}, X {V}; equals

cl* = Y1, (to’ xo) + 1/3 e? (4.5)
Let - ¥ » be a solution of Eq. (2. 1) with the boundary condition i« (3, 2) =
o*(x). We note that here in the definition of function ¢* the parameter

is assumed to be fixed, while the choice of parameter ¥ in function Y. will be
indicated below. Analogously to (4.2) we have the condition

| er* — v | << @ (%)

Hence, allowing for equality (4. 5) and inequality (4, 3), we obtain the estimate
V¥ (B0, o) <€ + Vae? 4 @ (%) (4.6)

Note that the estimate (3, 10) holds for the functions - g* of (4.4) and 'Yi',u being
examined here. We now choose parameters - § * > 0 and %, >0 soasto
fulfil the inequalities

B lra, 8x) T ae? & () << Y22 (4.7

For this choice of functions 6* and 177, and of parameters §, and x,
the proposed first player's control procedure is the following, Suppose that the first
player selected a partitioning A, of interval {24, ®]1 by points &, = 1,V <
1W< .. < Ty® =@, satisfying the condition ()}, — 7, §,. Let A,
be a partitioning of interval [¢, §] by points ¢, = 7O 1, <... < 4 = §,
selected by the second player,

The motions z,[t](t, < t <{ ®) are generated by controls y [¢]  and
v il chosen by the first and second players at the instants t,,® (m = 0,1, . .,

M—1) andt;® (j =0,1,..., N —1), respectively, on the .}
intervals [, &) and [t;®, Tﬁ)l) by the formulas

ult]l = ult,W = U, (t,®, 2, [v,M], wylt,M]) (4.8)

vitl = vig®l =V (1@, z,lv;®}, ult)) (4.9)

Here the function U v I8 defined by condition (3.4) and V &= { I/'}1 is some counter-
strategy selected by the second player,

As in Sect, 3 the probabilistic process (Zultl, woltl) (8o <t <9,
® = Q) is constructed recurrently, also by first defining certain auxiliary
processes, We examine a partitioning A of interval [z,, ®] by points £, = 1, <<
Tn<<...<tg= O including the points of partitionings A; and A,. We
remark that here the partitionings A, and A, do not coincide; therefore, the
functions (x,[t], wolt], u.lt]l, v.lt]) (ts < t < 7;) are the realizations of the
auxiliary probabilistic processes, and not, as in Sect. 3, simply the motions
(@altl, woltl)(ts < t < ).

We determine motion z*[¢] from equality (3.5) in which control % [t] is
determined by (4. 8) for T < 7, < v, and control v [t] by (4.9) for
;™ {7; <7j,1®.  In the auxiliary probabilistic process the equality z,[t] = z*[#]
is fulfilled with probability one for the motions Zolzl, wolt] for v, <<t << 75,4,
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The random motions welt] (v; <{ # < 7;4,)in the auxiliary process are determined
from equality (3,7) in which the parameter % = %,  is chosen from condition
(4.7) and strategy U,¢ is determined by condition (2. 2) in which function 7Yy
should be replaced by function Ve 1t can be verified that the probabilistic pro~
cess (z,[2], waltl)(ty << t << ¥, 0 ©Q,) can indeed be defined when the motions

z [t] and g [t] are defined as indicated, Furthermore, the estimates in Sect,
3 remain valid for this probability process, In particular, the inequality

Mo*(z 8]) < ¥, (for @) + B (s, ) (4.10)

holds, From (4. 10), (4.6) and (4.7) we obtain

Moz [8]) < cilty, o) + Y,et (4.11)

Since o*(z [0]) > ¢, forall z, from (4.11) follows
Plo*(z [0)) ey + Vel >1 — ¢
whence, by virtue of (4.4), we have the inequality (4.1) with k = 1,
First player’s control procedure incase k. = 2, Inequality
(4.1) with K = 2 can be proved analogously, The relations (4,2)-(4.7) derived for the

case k = 1 remain valid with index % = 1 replaced by index k=2, In the construction
of motion Z, [t} (¢, <{ ¢t <) we determine the probability measures  p(du)

and v(dv) selected by the first and second players at instants ¢, (U and
52, respectively, on the half-intervals [T}, Tiah,) and [tj¥, T}3)) by the
formulas

o (d) = b (d) = Oy (612, 20 [0, wo [057) (412

(m=0,1,..., M —1)
vi(dv) = v 9 (@) =V (1, 2o 1)) (7=0,1,..,N —1) (4.13)
3

4
Here function U,  is determined by condition (3.2) and V & {V}, is a
mixed strategy chosen by the second player,

The motion z*[t] (t; <t <{ Tiy1) in the auxiliary probabilistic process is
determined from equality (3. 14) in which the function p (du)  is determined by
(4.12) for T < v; < v, and the function vy (dv) by (4.13) for T¥ < T
< 7%,  The random motions W, [t] (v; T <C 7;,,)  are determined from
equality (3. 15) in which the parameter % = x, and the strategy Uy’ is
determined by condition (2.3) in which function Yz  should be replaced by function
y¥... The first player's control procedure in the case k& = 3 is shown below,

We pass on to the problem facing the second player and We construct the control
procedures ensuring the second player the fulfilment of the inequality

Plo@®Oh > —¢el>1—¢ (k=123 (4.14)
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for a preselected ¢ > 0 . We change function o© as follows:

Yk, 2 (Loy Zo) — Y/sE?, =D

o** (z) = {cz(x) (0 (2)<02(x) Ko@)+ ee), 2D

where function o0, is chosen so that function o** belongs to the class indicated
in Sect. 1 and the condition within parentheses above is fulfilled,

Second player's control procedure in the case k=1,
Analogously to (4. 6) we can obtain the estimate

V% (s To) > cilty, xo) — Yee? — a (%)

where Y% is a solution of Eq. (2. 1) with the boundary condition Y% (&, 2) =
o**(z).  We assume that the second player has selected a partitioning A, of
the interval [Zo, @], satisfying the condition T;(ﬂ — T;” Lo J = 01,...,
N — 1,  and that the first player has selected partitioning A, of interval {7, 0]
by points fp = 0 < T,V < ... <1y = 0.
The motions 1, [tl(¢, < ¢ <{ &) are generated by controls z [t]  and

v ltl, chosen by the first and second players at instants ¢, (1 (m = 0,1, . ..
cedM—1) and TP (F=0,1,..., N —1) respectively, on the half-
intervals [, ¢{},) and [T](”, z{?)) by the formulas

vlitl=ulr,®l=0U (T 2 [T, 0] (4.15)

vitlh = v [42] = V, (v;®, z, [1;®), wlt])

Function V, is determined by the condition in Sect, 3and U & {U}, isa
pure strategy chosen by the first player.

The motion z*[#] (v; <{ ¢ < 7;,,) in the auxiliary probabilistic process is
determined by equality (3. 5) in which the controls # [t] and vIt]l  are
chosen in accord with (4.15) for  Th' <C T < T and 1 < 7; < T
The random motions e [Z}(t; << ¢ <{ 1;,;)  are determined from equality (3, 7)
in which u, [t] = U*(t, z, [t], w, [t]) and v, [t] = Vo° (x, w, [t], u, [1)).
Here function [J* has been defined in Sect, 3 and strategy V,® is chosen from
condition (2. 8) in whieh function vy, should be replaced by function Vi,
Further, once again it can be verified that the probabilistic process (zult], wylt])
(to <t <P, © = Q) canindeed be defined when the motions  x [¢] and
w [£] are defined as indicated and the bounds in Sect, 3 remain valid for it,
In particular, the inequality

Mo** (x [“}D = Yff;ﬁ* (%0: x) — P (K*s 8,)

holds, Hence, by arguing analogously as in the proof of inequality (4. 1), we obtain
inequality (4. 14) with k = 1,
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Second player's control procedure inthe case k=2,
To prove inequality (4. 14) the second player's control procedure is constructed
analogously to the first player's control procedure in the proof of inequality (4. 1) in
the case £ =2,

Second player's control procedure in the case k=3,
When constructing the second player's control procedure we use the functions defined
in the first player's control procedure when proving inequality (4, 1) for k=1, with
the corresponding change of letters u, U, Ptov, V, Q, the replacement of
index & = 1 by index k =3, of condition (2,2) by (2.7) and of function Vs by v;‘,';,.

First player's control procedure in the case k = 3,
To prove inequality (4, 1), in the first player's procedure we use the functions
determined in the proof of inequality (4. 14) for the case k=1, with the corresponding
change of lettersu, U, P to v, V,Q ,  the replacement of index 4= 1by
index & = 3, of condition (2.5) by (2.4) and of function Y3 by  y;.. The
following statement is valid,

Theorem4,l The initial position (fos Zo) is specified, For any

preselected € > 0 we canfind% >0 and 8 >> 0 for which the control procedures
constructed guarantee the first and second players the fulfilment of the inequalities

Plo(z@)<{c, +el>1—¢, Plo@d)>¢—el>1—c¢
respectively, where ¢ = Ck(tm Zo) is the value of the position differential game
defined in the strategy class {U}; X {V}.

The author thanks N, N, Krasovskii for the formulation of the problem and for
valuable advice, and V, D. Batukhtin and A,I, Subbotin for discussions on the paper.
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